UNIT – II
	Project Schedules: Building the Project Schedule, Managing Multiple Projects, Use the Schedule to Manage Commitments, Diagnosing Scheduling Problems.

Reviews: Inspections, Deskchecks, Walkthroughs, Code Reviews, Pair Programming, Use Inspections to Manage Commitments, Diagnosing Review Problems.

Chapter 4: Project Schedules

It is used by the project manager to commit people to the project and show the organization how the work will be performed. Schedules are used to communicate final deadlines and, in some cases, to determine resource needs. They are also used as a kind of checklist to make sure that every task is performed in a well defined manner. If a task is on the schedule, the team is committed to do it. In other words, the project schedule means the project manager brings the team and the project under control.
Building the Project Schedule

The project schedule is a calendar that links the tasks to be done with the resources that will do them. Before a project schedule can be created, the project manager must have a work breakdown structure (WBS), an effort estimate for each task, and a resource list with availability for each resource. A project manager’s time is better spent on working with the team to create a WBS and estimates than on trying to build a project schedule without them. The reason for this is that a schedule itself is an estimate that each date in the schedule is estimated.

There are many project scheduling software products that can do much of the tedious work of calculating the schedule automatically, and plenty of books and tutorials dedicated to teaching people how to use them. However, before a project manager can use these tools, he should understand the concepts behind the WBS, dependencies, resource allocation, critical paths, Gantt charts, and earned value. These are the real keys to planning a successful project.

Allocate Resources to the Tasks

The first step in building the project schedule is to identify the resources required to perform each of the tasks. A resource is any person, item, tool, or service that is needed by the project that is either scarce or has limited availability. Many project managers use the terms “resource” and “person” interchangeably, but people are only one kind of resource. The project could include
· computer resources (like shared computer room, mainframe, or server time),
· locations (training rooms, temporary office space),
· services (like time from contractors, trainers, or a support team), and
· Special equipment that will be temporarily acquired for the project.

Most project schedules only plan for human resources and the other kinds of resources are listed in the resource list, which is part of the project plan. One or more resources must be allocated to each task. To do this, the project manager must first assign the task to people who will perform it. For each task, the project manager must identify one or more people on the resource list capable of doing that task and assign it to them. Once a task is assigned, the team member who is performing it is not available for other tasks until the assigned task is completed. While some tasks can be assigned to any team member, most can be performed only by certain people. If those people are not available, the task must wait.

Some tasks may require more than one person to be assigned to them, for example, a programming task may require three programmers. In this case, the effort for the task should be divided among those resources. The project manager must keep in mind the difference between effort and duration. Duration is the amount of time that elapses between the time the task is started and the time it is completed, measured in hours (or days, weeks, etc.). It does not take into account the number of people performing the task. Effort is measured in person-hours (or person-days, person-weeks, etc.), and represents the total number of hours that each person spent working on the task.

It’s possible to allocate one resource to two tasks simultaneously by assigning a percentage of the resource’s time to each task. When the task stretches over several days, but the resource is needed only for part of each day or a few days of the task, the resource can be assigned part-time to the task. For example, a resource can be 50% allocated to two tasks, or 30% allocated to one task and 70% to another, etc.

In cases where more than one person is allocated to a task, the project manager must take overhead into account. Overhead is any effort that does not go to the core activities of the task but is still required in order for the people to perform it. One useful way to compensate for the extra overhead is to use the range that was generated by the Wideband Delphi estimate (which was for effort, not duration). The project manager can choose an effort estimate from the low end of the range if fewer resources are allocated to the task, whereas an estimate from the higher end can be used for a larger number of resources.

It is important to remember that resources are individual people, and no two people will take exactly the same amount of time to perform a task. The project manager should be familiar with the relative expertise of each team member. A senior programmer can often do a job in a fraction of the time that it would take a junior programmer to do the same work. Resource allocation is often the most difficult and time-consuming part of effective project management, because it requires the project manager to know the team. There is no hard-and-fast rule for deciding who is allocated to which task. This is a decision that requires a great deal of attention to the skill sets of the people on the team and to their personal motivation. Some people prefer working on certain kinds of tasks, and are most productive.
Identify Dependencies

Once resources are allocated, the next step in creating a project schedule is to identify dependencies between tasks. A task has a dependency if it involves an activity, resource, or work product that is subsequently required by another task. Dependencies come in many forms:
· A test plan can’t be executed until a build of the software is delivered
· Code might depend on classes or modules built in earlier stages
· A user interface can’t be built until the design is reviewed.

If Wideband Delphi is used to generate estimates, many of these dependencies will already be represented in the assumptions. It is the project manager’s responsibility to work with everyone on the engineering team to identify these dependencies. The project manager should start by taking the WBS and adding dependency information; each task in the WBS is given a number, and the number of any task that it is dependent on should be listed next to it as a predecessor. Fig.4.1 shows the four ways in which one task can be dependent on another.

There are many reasons why one task may be dependent on another. The most common is the causal relationship that the dependent task relies on a work product generated by the predecessor. For example, the reviewers of a document cannot review it until it is completed, so a review task is dependent on the task that generates the document that will be reviewed.
[image: image1.emf]
 Fig.4.1: Four different types of predecessors

One task may also depend on another because they share the same resource, for example if there is only one programmer who has the knowledge to perform two different programming tasks, he cannot do them both at the same time; one must be dependent on the other. If there is no specific reason that one of those two programming tasks must be done before the other, then the project manager and programmer have discretion to perform them in either order. The easiest way to maintain the resource allocations and dependencies is to use a project management software package.
Create the Schedule

Once the resources and dependencies are assigned, the software will arrange the tasks to reflect the dependencies.
[image: image2.emf]
 Fig.4.2: Gant chart for Tasks execution

The software also allows the project manager to enter effort and duration information for each task to calculate a final date and build the schedule. The most common form for the schedule to take is a Gantt chart. This is a type of bar chart developed by Henry Laurence Gantt, an American engineer who was prominent during the first two decades of the 20th century. Fig.4.2 shows an example of a Gantt chart. Each task is represented by a bar, and the dependencies between tasks are represented by arrows. Each arrow either points to the start or the end of the task, depending on the type of predecessor (see Fig.4.1). The black diamond between tasks D and E is a milestone, or a task with no duration. Milestones are used to show important events in the schedule. The black bar above tasks D and E is a summary task, which shows that these tasks are two subtasks of the same parent task. Summary tasks can contain other summary tasks as subtasks. The Gantt chart in Figure 4-2 demonstrates the following predecessor types:

· Task A is a Finish-to-Start (FS) predecessor of Task B. Task B does not start until Task A is complete. For example, code cannot be reviewed until it is written, so the programming task would be a Finish-to-Start predecessor to the code review task.

· Task A is a Start-to-Start (SS) predecessor of Task C. Both tasks start at the same time. If the start time for Task A were delayed, then the start time for Task C would move forward to match it. For example, a team of software testers might all be expected to start their test executions at the same time. One tester’s task would depend on the build being delivered; that task would be a Start-to-Start predecessor for the other testers’ tasks.
· Task C is a Finish-to-Start (FS) predecessor of Task D. Task D is a Finish-to-Start (FS) predecessor of a milestone, which in turn is a Finish-to-Start predecessor of Task E.
· Task E is a Finish-to-Finish (FF) predecessor of Task B. Note the delay before Task B starts—it does not start until its planned completion time will match up with Task E. This allows the resources required for Task B to be allocated to another task in the meantime. For example, a test plan can be started as soon as the requirements are complete, but it cannot be completed until after the design is done. So the test plan task would have the requirements task as a Finish-to-Start predecessor and the design task as a Finish-to-Finish predecessor.

Reconcile the Schedule with the Organization’s Needs

Once all of the task durations and predecessors have been determined, the project management software can calculate an expected due date for the project. If this date does not fit with the needs of the organization or the project stakeholders, the project manager should first go back to the resource list to see if the tasks can be reallocated more efficiently. One way to do this is to look for large gaps in the schedule; sometimes a small shift or swap in resources can close those gaps.

Another way to deal with a schedule that runs past a non-negotiable due date is to add or rearrange resources (if available). This is one reason it is important to set up different kinds of predecessors. By making a longer task a Finish-to-Start predecessor of a shorter task, for example, a gap in the allocation level for resources might emerge in front of the shorter one. That gap could be moved or filled with another task. Sometimes there are technical solutions that can help to reduce the schedule. It may be possible to return to the assumptions generated during the estimation session.

As a last resort, however, the project can be released in several phases. This requires the project manager to revisit the project’s scope, which will have to be adjusted to allow for a phased release like some features will have to be broken into phases, while others may be cut out entirely. This requires that the project manager revise the vision and scope document and go through its review process all over again (see Chapter 2).
Add Review Meetings to the Schedule

There is no project plan that perfectly estimates every task; the only way the team members can improve their planning skills is by learning from their mistakes. Progress reviews should be held regularly, both to keep track of whether the schedule is accurate and to plan action if the project goes off course. If the team is already holding weekly, biweekly, or monthly status meetings (see below), then these can also function as progress reviews (as long as the specific details of the schedule are discussed at every meeting). The project manager should go through each task that is currently in progress and work with the team to determine the status of the task.

During the review, if the team discovers that a task is going to be late, the project manager must find a way to deal with it in the schedule. The result of this meeting will usually be an adjusted project schedule. However, sometimes delays will cause serious problems that cannot be dealt with in the schedule. If a delay means that an unmovable deadline will be missed, the team will either have to adjust the schedule to put in overtime, or it will have to go back to the vision and scope document and scale back the scope of the project.

Milestone reviews are meetings that the project manager schedules in advance to coincide with project events. The most common way for project managers to handle milestone reviews is to schedule them to occur after the last task in a project phase (such as the end of design or programming). Project schedules are usually broken down into distinct phases which correspond to the major software engineering activities such as scope, requirements, design, development, and testing. Each of these phases is usually represented on the Gantt chart as a summary task, with a milestone as the final subtask to mark the end of the phase.

Once again, the project manager should make sure that the representatives from the engineering team and stakeholders attend all of those meetings. The difference between a milestone review and a progress one is that the project manager writes up a report after the milestone review. This report should list any schedule delays or changes, any modifications to the scope, and any serious issues that came up since the last milestone review meeting. These reports should be stored with the project plan. A final milestone should be added to the schedule for a postmortem meeting run by the QA lead.

Optimize the Schedule

Many times, the project manager has options in how the schedule is arranged. There is often flexibility in the order in which the tasks may be performed, or to whom they may be assigned. Most schedules end up with several sequences of
· Interrelated tasks include a requirements document may have a string of elicitation, documentation, and verification tasks
· Software must be designed, coded, and reviewed

· Test plans must be written, reviewed, executed, repaired, and regressed.

In many schedules, there is some slack in these sequences. In a sequence of tasks, slack is the amount of time that any of the tasks can be delayed without causing the due date of the final task in the sequence to be delayed as well. A tight schedule has very little slack; a delay in any task will cause a delay in the due date. For example, a task may depend on a work product, but the person who will perform that task may not be available until three days after the work product is scheduled to be complete; this creates a three-day gap in the schedule. It may be possible to rearrange the tasks in order to reduce that slack

Many project management software packages have a feature that summarizes the allocation of each resource per day in the schedule, which can be used to check for slack periods in which resources are unallocated. This is also helpful for ensuring that no resource is over-allocated, or more than 100% allocated to multiple tasks simultaneously. If any resource is over-allocated, it means that there is a dependency between two tasks that was not discovered. When this happens, the schedule is guaranteed to be inaccurate.

Some project managers fall into the trap of using slack in the schedule as a way to mitigate risk. They think that if there is extra space between two tasks, then the second task will have some protection, in case the first task is late. This is usually a mistake. One important tool for optimizing the schedule is the critical path. The critical path is the sequence of tasks that represents the minimum time required to complete the project. It is the sequence that, if delayed, will delay the schedule. The last task on the critical path is always the last task in the schedule, when the critical path is completed, the project is done. Every project schedule has at least one critical path. It is very important to monitor the critical path closely. If a task that is on the critical path is late, the project will be delayed. Fig.4.3 shows an example of how a critical path would be displayed in a project schedule. The darker tasks represent the critical path; the lighter tasks are off of the critical path. In this example, the test preparation tasks are not on the critical path. This means that if there is a delay in building or reviewing the test plans, then the project due date will not change unless that delay is long enough to put those tasks back on the critical path. In this case, that would require nine weeks.
[image: image3.emf]
 Fig.4.3: Example of a project schedule showing a critical path

This helps the project manager make decisions about the project. For example, if an extra person becomes available for the project, the project manager can assign him to tasks on the critical path, since assigning him as a resource on a noncritical task won’t have any noticeable effect on the due date. It also helps the project manager understand the impact of scope creep or changing requirements, by showing whether those changes will make a difference in the time to deliver.
Don’t Abuse Buffers

Many project managers commonly add buffers to their schedules. A buffer is a task added to the schedule with no specific purpose except to account for unexpected delays. This practice involves either adding extra tasks or padding existing tasks at strategic points in the schedule where overruns are “expected.” There are times when buffers are useful. For example, on a year-long project, if every programmer has two weeks of vacation and on average takes one week of sick days, then the project is guaranteed to lose three person-weeks of effort over the course of the year. The project manager could sprinkle three person-weeks of buffers at strategic points in the schedule in order to accommodate for this known loss. The use of buffers in this case is appropriate because the size of the loss is known.

The bottom line is that when buffers are added to the schedule, luckily the project manager already has a tool to help him plan for the unknown or unexpected: he can work with the team to build a risk plan. Adding a risk plan to a schedule that does not already include risk mitigation tasks requires that the schedule be updated and the project plan reinspected; however, this is not a bad thing. Updating the schedule guarantees that the schedule does not contain any “white lies,” and inspecting it effectively communicates the team’s true estimate of the work to everyone who will be impacted by it.

Track the Performance of the Project

After the schedule is completed and optimized, it is ready for review. The schedule should be inspected by the project team, either on its own or as part of the project plan. It is important that the people on the project team who will do the work all agree that it represents a realistic plan for completing the project.

A copy of the version of the schedule that has been approved should be set aside and used as the baseline. A baseline is a fixed schedule that represents the standard that is used to measure the performance of the project. Every time a change to the scope of the project is approved, the schedule should be adjusted and a new revision of the baseline should be used instead. Many project management software packages have a feature that allows the project manager to maintain a baseline schedule and track revisions to it.

This means that there are two versions of the schedule. One is a fixed baseline version that is kept as a reference, and the other is an actual version of the schedule that is updated to reflect what actually happened over the course of the project. The baseline schedule never changes over the course of the project. Every time a task is delayed or changed, the actual schedule should be updated to reflect that. Each schedule change should be stored as a separate revision, which shows a snapshot of what the schedule looked like at any time in its history.

When the due date for the actual schedule is later than that of the baseline, the project has slipped. However, the schedule slip does not tell the whole story. A schedule might slip because the team is waiting for a single person to complete a delayed task. It might also slip because there is a general tendency to underestimate the effort required to perform all tasks. It’s important for the project manager to track down the source of each slip in order to help improve the team’s estimates in the future, and to work with senior management to determine whether action needs to be taken.

The most common way to understand the nature of the schedule slip is to calculate the variance. Variance is now the core of a project management system called earned value management, which tracks the project by considering effort “earned” against a budget only after it has actually been performed. For software projects, the variance is a measurement in person-hours (or person-days, person-years, etc.) that shows the difference between the effort planned to date on the baseline and the effort completed on the actual schedule.

The budgeted cost for work scheduled (BCWS) is the estimated effort of the actual tasks that appear on the schedule to date. The actual cost of work performed (ACWP) is the effort spent on the tasks in the schedule that have actually been completed by the development team members. The data required to calculate this information can be gathered by comparing the effort represented in the baseline schedule (to find the budgeted cost) with the effort in the actual schedule. (Many project management software packages will calculate these numbers automatically.) The variance is the difference between these two numbers (BCWS – ACWP). If the variance is positive, then the project cost fewer person-hours than were budgeted; if it is negative, then the project overran the budget.

The variance is useful in helping a project manager to determine whether a schedule slip is due to an isolated incident or a systematic problem. If there is a large schedule slip but the variance is small (if, for example, it is much smaller than the length of the delay), then the project manager should look for one or two tasks that were delayed. On the other hand, if the variance is large, there may be a problem with the way the team estimated the tasks. The project manager can spend additional time with the team to work on the estimates.

The earned value can be calculated by generating the cost performance index (CPI) for the project. CPI is calculated by dividing BCWS / ACWP and multiplying by 100 to express it as a percentage. A CPI of 100% means that the estimated cost was exactly right and the project came in exactly on budget. If it is under 100%, the work cost less effort than planned; a CPI greater than 100% means that the estimate was not adequate for the work involved. CPI can be used either to compare projects or phases within a project.

The progress of the project should be tracked at the review meetings in terms of slips, variance, and earned value. The simplest way to track the project’s progress is by comparing the due date of the actual schedule with the due date of the baseline to anticipate the expected delay in the due date. The variance data and the individual delays that led to the variance should also be recorded, as well as any viable theories or conclusions drawn about why the schedule slipped. This information will be taken into account in the postmortem report.
Managing Multiple Projects

Many project managers are responsible for multiple projects. If each project is planned well, managing a set of them should not be difficult. When projects don’t share dependencies, managing them is straightforward to just manage each project individually, with a separate project schedule for each one. When projects share dependencies, they are more challenging to manage. There are two ways that one project might depend on another. In the first type, two projects rely on the same resources; in the second type, a work product generated by one project is needed by the other. Getting a handle on these dependencies is the first important step in managing multiple projects.

Understand Dependencies between Projects

The most common way for projects to be interdependent is through shared resources. One instance of this happening is “pipelined” projects. In many software organizations, software projects go through a set of sequential phases: requirements, design, development, programming, and testing. In each phase, most of the work is done by a small subset of the team, leaving the rest of the team available to work on other projects. To allow the team to work at full capacity, they might be working on several projects at once. Project A is in the requirements phase, while at the same time, project B is in design, project C is in development, and project D is being tested.

The trouble with this system is that no two projects take exactly the same time, and the phases don’t always require the same percentage of the total effort. For example, programming is typically 30% to 40% of the total effort of a project. But during that time, a lead tester might be working on a test plan, while programmers might have to stop work for half a day to review the requirements or design documents on another project. When there are more than two or three projects being worked on simultaneously, things can get very chaotic.

The project manager’s first goal is to make sure that the shared resources are not over-allocated. If one project’s schedule has a resource allocated 50% for the entire week, while another has that resource allocated 100% during the same week, that resource has a 150% allocation. Over-allocation problems often do not show up on the schedule.

If a person can be over-allocated even if the schedule says that she isn’t. When taking effort into account on a project schedule, it’s important to remember that even though people may be in the office for eight hours each day, they might only be available for project work for five of those hours. Also, the project manager must make sure that changes are controlled properly. If the scope of the project changes but the team is not given a chance to create new estimates, team members will almost certainly end up over-allocated. Under-allocation is also a danger. If an engineer does not have any scheduled tasks for a week, she can easily get bored. That engineer may not be unhappy about the situation, but if the rest of the team is crunched for time, their morale will be impacted when they see their teammate take off early every day. One way to prevent this is to have low-priority projects where tasks can be assigned to under-allocated team members.

Modern project management software will often have a “resource pool” feature that allows a project manager to set up a single set of resources available to multiple projects. When a project schedule draws a resource from that pool, the allocation level for that resource is increased accordingly in the pool, so that allocation shows up on all of the other project schedules. Allocation reports can be run to verify that no resource is over or under-allocated. Alternately, multiple projects can be included on a single schedule. This is slightly harder to maintain, but very easy to understand at a glance.

Another common way for two projects to be interdependent is when one project has a task that has a predecessor in another project. Identifying these predecessors is generally straightforward. Any time a task relies on a piece of software, a document, or another work product that is scheduled to be built in another project, a dependency is created in the schedule. The easiest way to handle this situation is to require that the dependent task does not begin until its predecessor ends. Modern project management software tools have features that help to automate this process by grouping multiple projects together into one master schedule.

The one important pitfall is that each cross-project dependency increases the risk of delay on the dependent project. To mitigate this risk, every predecessor must be reviewed at the project meetings for the dependent project.

Prioritize Projects Realistically

Prioritizing projects is similar to prioritizing tasks, it requires tough decisions, and will almost always make someone unhappy. Priorities are always relative that each project’s stakeholder feels that his project is the most important one. And in a way, it’s the most important one to him, but not necessarily to the organization. That doesn’t change the fact that if there is a programmer available to work and there are two projects that need to get done, a decision must be made to assign her to one project or the other.

While prioritizing projects seems to require the same actions as prioritizing tasks, it is much more politically charged, and the project manager is under much more pressure to throw away the prioritization entirely and pretend that all of the projects can be done at the same time. This is usually a mistake—unless two projects do not share any resources at all, there will come a time when a resource must be assigned to either one project or the other. If there is no clear priority, this can create confusion and chaos.

Prioritizing projects is about making decisions. Someone has to put his foot down and say that project A is more important than project B. In some organizations, it is carried by project manager or senior managers (often a steering committee) who have the authority to make the decision. Once the decision-maker is found, the process of prioritization is straightforward. It is similar to the way risks are prioritized, with the exception that no two projects are allowed to receive the same priority. The final result of the prioritization process is a list of projects that are arranged in order of priority, with a unique priority must be assigned to each project.

Once priorities are assigned to all projects, it’s time to assign resources to the tasks. Each resource should be assigned to the next task on the project with the highest priority that does not yet have work being done. Finally, a periodic priority meeting should be held to reevaluate the project priorities. Some organizations do this weekly, while others do it every two weeks or even monthly.

Use the Schedule to Manage Commitments

A project schedule represents a commitment by the team to perform a set of tasks. When the project manager adds a task to the schedule and it’s agreed upon by the team, the person who is assigned to that task now has a commitment to complete it on or before due date. Senior managers feels that they can depend on the schedule is an accurate forecast of how the project is going on, whether any schedule slips, then it’s treated as an exception, and an explanation is required. For this reason, the schedule is a powerful tool for commitment management.

One common complaint is that the changes may not be so easy to accept. Typically, the project manager will call a meeting to announce a new tool or technique, and then he may ask the team to start performing code reviews. Things that seem like a good idea in a meeting often fail to “stick” in practice. This is where the schedule is a very valuable tool. By adding tasks to the schedule that represent the actual improvements that need to be made. If the team does not feel comfortable making a commitment to the new practice, the disagreement will come up during the schedule review. This is usually justified with an explanation that there isn’t enough time, and that implementing the change will make the task late.

By explicitly adding a task to the schedule, the project manager ensures that enough time is available to adopt the change. This cements the change into the project plan, and makes it clear up front that the team is expected to introduce the practice. More importantly, it is a good consensus-building tool because it allows team members to bring up the new practice when they review the project plan.

Diagnosing Scheduling Problems

When a project manager doesn’t create a schedule, the organization is given an unrealistic view of how the project will progress. When schedules are not correct, the project manager usually has to resort to drastic measures in order to try to bring the project in line with the organization’s expectations, and those measures often don’t work. Even when they do, they hurt the morale of the team, and they frequently hurt the quality of the software produced as well.

Working Backward From a Deadline

One of the most common problems that affect a project is that the deadline, which seemed perfectly reasonable when the project started, begins to seem completely unrealistic as the date starts getting closer. This is often caused by a project manager facing a deadline that cannot be changed. Usually, the date comes from marketing or customer relations needs. Instead of being based on estimates of actual effort from the team, expectations are based on agreements between project managers, senior managers, and stakeholders.

When faced with a non-negotiable deadline for a project, many project managers will work backward from the deadline to determine what work needs to be performed. One misguided way of doing this is to divide the project into phases and assign each phase a certain percent of the schedule. The project manager may decide, for example, that programming should take 60% of the time, testing should take 25%, etc. These numbers don’t come from any specific knowledge of the work required; rather, they come from the need to fit that work into predetermined schedules.

This is also unfair to the stakeholders especially if they are clients of a business. Many businesses will see certain clients as important and will promise things that they can’t deliver. A project manager in this situation, who creates an unrealistic schedule to meet those commitments, does not necessarily recognize that the project’s deadline is unrealistic. More often, the client is blamed for expecting too much or for being too picky about the deliverable. The project manager may also blame a marketing or sales department for over-promising. But, truly, it is the project manager’s fault: he agreed to an unrealistic schedule rather than being honest about the likelihood of failure and presenting alternatives like adding resources, reducing scope, proposing a phased release, bringing on consultants, or using different technologies.

Misunderstood Predecessors

Sometimes, a deadline that seemed reasonable based on the effort estimates can still go wrong, if the project manager has not taken the time to understand how the tasks depend on each other. If a dependency is discovered halfway through the project, it can send the entire team into chaos. This situation is most common when the team does not sit down to create a work break-down structure. When a WBS has not been created, it is not uncommon to discover important tasks required to complete the project well after the work has started. By the time the extent of the poor estimate is known, it may be too late to change expectations within the organization.

When predecessors are not discovered until the project is underway, there are usually few opportunities for correction. Critical team members are already working on other tasks, and end dates may have already been agreed upon. What’s more, in a tight schedule, predecessor problems often cascade. When one task has to wait, all of the tasks that depend on it will also have to wait, as will the tasks that depend on those, and so forth. Often, these cascading delays aren’t fully recognized by the team until late in the project. To the project manager, it seems that things are moving along at a steady pace; it is not until the project nears completion that it becomes apparent that the deadline is in jeopardy.

This problem is especially hard on software testers, simply because they are responsible for the tasks at the tail end of the software project. The testers are responsible for the bulk of the remaining work. This is especially unfair when the root cause of the delay is in an earlier phase of the project: the testers did not create the problem, yet they bear the brunt of the pressure.
Chapter 5: Reviews

A review is any activity in which a work product is distributed to reviewers who examine it and give feedback. Different work products will go through different kinds of reviews as:

· The team may do a very thorough inspection
· Technical review of a software requirements specification,
· The vision and scope document will be passed around via email and have higher-level walkthroughs.

Reviews are useful not only for finding and eliminating defects, but also for gaining consensus among the project team, securing approval from stakeholders, and aiding in professional development for team members. In all cases, the work product coming out of the review has fewer defects than it had when it was submitted. Every defect that is found during a review is a defect that someone did not have to spend time tracking down later in the project.

There are many ways that a work product can be reviewed. Each kind of review is appropriate for different audiences or kinds of work product. The purpose of all reviews is to ensure that each reviewer is satisfied that the work product is correct, and that his or her perspective is represented. The goal of every review is to save the project team time and effort. It’s much easier to fix the problems on paper, before they cause software to be built incorrectly. An effective way to make sure defects are caught early is to schedule many reviews over the course of the project to catch the defects before they become deeply embedded in the software.

Inspections

An inspection is one of the most common reviews found in software projects to reach consensus on a work product and approve it for use in the project. Commonly inspected work products include software requirements specifications and test plans. In an inspection, a work product is selected for review and a team is gathered for an inspection meeting to review the work product. A moderator is chosen to moderate the meeting. Each inspector prepares for the meeting by reading the work product and noting each defect. In an inspection, a defect is any part of the work product that will keep an inspector from approving it. For example, if the team is inspecting a software requirements specification, each defect will be text in the document that an inspector disagrees with. The goal of the inspection is to repair all of the defects so that everyone on the inspection team can approve the work product.

· Most project managers have seen their projects get delayed because of scope creep and unnecessary work caused by changes.

· If the team starts building software based on a vision and scope document that has a serious defect, eventually the entire project will have to stop and reverse course.
· Defects missed in a design specification, for example, will have to be corrected later after they have been coded.

According to a report by the Software Engineering Institute, it costs more to not do inspections than it does to do them. A national survey of software engineering teams found that in a typical inspection, four to five people spend one to two hours preparing for inspections, followed by one to two hours to hold an inspection meeting. The total effort required for the inspection, therefore, is 10 to 20 person-hours; this effort results in the early detection of an average of 5 to 10 defects. (On the average, these defects, if left in the document, would require either 250 to 500 lines of new code or modification of 1000 to 1500 lines of legacy code to repair if they were eventually caught).

Inspections are easy to implement, and have an immediate effect on quality and consensus-building. A small team spending a few hours inspecting a work product will catch errors that could potentially save weeks, or even months, of wasted effort. An effective inspection requires a well-chosen team, a moderator who is able to run the meeting, and an author who is willing to listen to criticism and fix the work product being inspected.

Choose the Inspection Team

The job of the inspection team is to work with the author of the document in order to identify any defects. A defect is any problem in the document that will prevent an inspector from approving it. Once a problem is identified, the inspection team must work to come up with a solution that will fix the problem. The project manager must select a team that can perform this function. This means that each inspector needs to have enough familiarity with the project and the way the work product will be used to understand its problems and propose changes.

The project manager must choose a team of 3 to 10 inspectors. Ideally, each inspector should represent a different perspective on the work product. A designer will use a document for different tasks than a programmer will. It is important that each person who will use the document has his views represented in the inspection team. This is critical for catching all of the defects. During the inspection, the team works to identify any defects in the work product. They are expected to evaluate it from two perspectives.
· Perspective of their own expertise, where the inspectors identify any issues that will interfere with the development of the project. For this role, they must draw on their engineering skills and experience with past software projects.
· Evaluate the work product from a common sense perspective. Each inspection team member should think about the ideas in the vision and scope document.

Select a Moderator

The project manager must choose a moderator to run the inspection meetings. This person must be able to objectively evaluate the work product being inspected and understand any issues that are raised during the inspection. The moderator will also need to be able to control the meeting. If a few inspectors start a discussion to address a defect that might take a lot of time, the moderator will have to be able to stop that discussion and table it as an open issue. It takes some practice to keep control of a meeting.

The project manager should be an inspector, so an independent and unbiased moderator is needed. A good moderator will have sufficient technical background to understand the work product being inspected. It is important for the moderator to be objective, and not to favor one perspective over another during the inspection meeting. In some organizations, the moderator is never a part of the project team, and does not have a stake in the project. However, some people have found it useful to select as moderator a team member who will not be inspecting the document, because the moderator should have an understanding of the issues discussed during the meeting.

The hardest part of the moderator’s job is to prepare the inspectors and the author for criticism of the work product. When somebody writes a document, he may be uncomfortable with the idea that it contains errors. It’s his work and, in our day-to-day lives, few of us are used to having our work critiqued. But all documents have defects, and authors need to get comfortable with this idea. This is by far the most challenging part of implementing inspections. To address this, the moderator must help the author to understand the benefit of the criticism. It’s the moderator’s job to make sure that the meeting does not become personal criticism, and that the comments are always constructive. An effective way to do this is to focus the discussion on each defect and come up with a specific resolution. It’s also the job of the inspection team to do more than just identify the problems. The moderator compiles all of the defect resolutions into an inspection log (see Fig.5.1).
[image: image4.emf]

 Fig.5.1: Sample Inspection log

At the top of each inspection log is information about the inspection meeting: what work product was being reviewed, when it was held, who was in attendance, whether or not the work product was read by each inspector, how long each inspector spent reviewing the work product, and how many issues (including both defects and open issues) were found. Each work product should have a unique version number, to ensure that the inspection log can be matched up to the proper version of the work product.

The inspection moderator should ask each team member how long he or she spent reviewing the work product and record that number in the log. This stands as a record of how much effort went into the work product, which will help in future estimation, project planning, and impact analysis activities. If any inspector failed to review the work product, the moderator must halt the meeting and reschedule it in order to allow all of the inspectors enough time to review the work product.

The rest of the inspection log contains a list of action items. Each item is marked with the exact location of the defect and the solution proposed by the inspection team. In many cases, the solution is a wording change. The work product contains a specific sentence that is unclear, ambiguous, or incorrect. After a brief (usually under five minutes) discussion, the inspection team identifies wording that will correct the defect. In this case, the moderator writes the new wording in the inspection log, and the author agrees to update the work product accordingly.

It is important that the inspection log is readily available to all inspectors. After the meeting, it should be distributed to all inspectors, and stored along with previous versions of the document. All changes must be made before the work product can be inspected again.
Inspect the Work Product

During the inspection meeting, a moderator leads the team page by page through a printed copy of the work product. The purpose of the meeting is to identify and fix any defects. The moderator does not actually read each page out loud or give the team time to read the page. The team members read the document prior to the inspection, during their preparation. When the moderator goes through the document page by page, he simply asks the reviewers for their defects on page 1; once those are done, he asks for the defects on page 2 and continues through the rest of the document. Prior to the inspection meeting, each team member should be given a checklist to help her to identify defects. Checklists will be different for different kinds of work products. The script in Table 5.1 describes the process for an inspection meeting.

Preparation
Each inspector reviews the printed copy of the work product individually, prior to the inspection meeting. Any defects that are found should be marked on the copy so that they can be brought up in the meeting.
	Name
	Inspection meeting script

	Purpose
	To run a moderated inspection meeting

	Summary
	In an inspection meeting, a moderator leads a team of reviewers in reviewing a work product and fixing any defects that are found.

	Work Products
	Input: Work product being inspected

Output: Inspection log

	Entry Criteria
	A moderator must be selected, as well as team of 3 to 10 people. A work product must be selected, and each team member has read it individually and identified all wording that must be changed or clarified before he or she will approve the work product. A unique version number has been assigned to the work product.

	Basic Course of Events
	1. Preparation: The moderator distributes a printed version of the work product (with line numbers) to each inspector, along with a checklist to aid in the review. Each inspector reads the work product and identifies any defects to be brought up at the meeting.

2. Overview: The inspection meeting begins. The moderator verifies that each team member is prepared.

3. Page-by-page review: The moderator runs through the work product page by page. Inspectors indicate where there are defects. Each defect is either resolved or left as an open issue. The moderator adds each defect to the inspection log.

4. Rework: The author repairs the defects identified in the inspection meeting.

5. Follow-up: Inspection team members verify that the defects were repaired.

6. Approval: The inspection team approves the work product.

	Alternative Paths
	1. During Step 2, if any team member has not read the work product, then the inspection is halted. The meeting is rescheduled and the script returns to step
2. During Step 4, if an inspection team member discovers additional defects in the work product, then the moderator calls another meeting and the process returns to step 1.

	Exit Criteria
	The work product has been approved.

 Table 5.1: Inspection meeting script

In many organizations, the moderator requires that each inspector submit a written list of defects that were found prior to the inspection meeting, and all defects are compiled into a single inspection log and distributed to the entire inspection team. This optional step can reduce the time required for the meeting because instead of going through the entire work product page by page, the moderator only goes through the log, and the author and inspectors have time to prepare in advance to respond to the defects.
· Overview: The moderator verifies that each inspection team member has read the printed copy of the work product. If any team member has not prepared, the inspection is aborted and rescheduled for a later date.
· Page-by-page review: The moderator turns to the first page of the work product and asks if anyone found any issues on that page. Team members bring up each issue that they found during their preparation. For each issue, the moderator leads a discussion between the team and the author to identify new wording that will resolve the issue. The team should come up with the actual text that will be inserted into the document in order to fix the defect; the moderator should add this fix to the inspection log. If the team cannot come up with a fix on the spot, or if discussion lasts more than about five minutes, the moderator adds it to the inspection log as an open issue and assigns it to the team member who brought it up (and anyone else who is involved), so he can work with the author to resolve it. Once all issues for the page are discussed, the moderator moves to the next page in the work product.
· Rework: After the inspection meeting is over, the author makes the changes in the inspection log and works with the inspection team members to resolve all open issues. When the changes are complete, the author turns the updated work product over to the moderator.
· Follow-up: The moderator distributes the updated work product to the inspection team. Each team member verifies that he can now approve the work product. If there are any issues that were not fully resolved or additional defects that were not caught, he notifies the moderator, who calls another inspection meeting and starts the inspection process over again. Once the team gets through an inspection without any open issues and can agree on any changes that must be made, the work product can be updated and distributed for approval.
· Approval: If any inspector feels that there are still further issues raised by the corrections to the work product, another inspection meeting can be held; however, the project manager and author can also work individually with everyone involved to make sure that the changes are adequate. Once everyone on the team feels that the changes they identified are adequate, they can approve the updated work product without holding another inspection meeting.

The moderator adds a signature page to the work product and distributes a printed version for signature approval. The signed work product is archived.

Manage the Author’s Expectations

Many people who have implemented inspections have found that it is very difficult for authors to sit through an inspection meeting without defending their work. Instead of providing clarification that is used to update the work product, they take over the discussion and, by being defensive and loud, get the inspectors to agree not to report defects. It leads to situations when the inspection team understands what the author meant, but the work product, which remains unchanged. It is the moderator’s job to keep the discussions on track and prepare the authors for the inspection. A major challenge of the moderator role is as follows:

· Keeping the author from altering the understanding of the document through discussion.
· Each inspector should keep in mind the fact that if he did not understand something after reading a document, then it is probably the document’s fault, not the reader’s.
· The author should be prepared to listen to the inspection team to discuss defects.
· The author feel less defensive is to take the option in which the inspection team members submit their defects to the moderator before the inspection meeting.
· In some organizations, project managers have found that it useful to require that the authors not talk in the inspection meetings, to let the document stand on its own.

As long as the author is able to listen to the moderator’s rules, especially when it comes to identifying and addressing defects, he can be a valuable participant in the inspection process.

Help Others in the Organization Accept Inspections

Over the many years that inspections have been practiced in software organizations, project managers have often found that when they attempt to implement inspections, the team pushes back. This opposition occurs because, to some people, it is not intuitively obvious that spending the time inspecting the work products up front will save the team from having to fix the software later. The project manager should prepare for potential resistance by understanding exactly why inspections are important.
· Project managers often find that engineers are very unhappy with the idea of inspections. This is especially unfortunate because inspections are one of the most effective ways to prevent defects and make the most efficient use of the engineers’ time.
· Luckily, a small number of objections tend to be raised most of the time, and each of these objections has a straightforward response. In the end, it is usually not hard for a project manager to show most reasonable people that inspections are worth doing.

· The most effective way a project manager can sell inspections to the organization is to show the savings in terms of time and money. Each inspection yields defects that would have been much more expensive to fix had they not been found.
· The project manager can sell inspections is by pointing out the knowledge transfer benefits. By instituting inspections and code reviews, engineers other than the author of a work product are cross-trained on it, and can maintain it in the future if the author is busy with another project or has left the organization.
· The project manager can help people to accept inspections and understand their benefit is to run the first inspection meetings using work products created by people who are widely respected in the organization.

When a project manager starts working toward implementing inspections, there are three objections that come up most often: people feel that inspections take too long, they do not like their work criticized, and they are protective of the final product. Luckily, it is not hard to anticipate these objections and give effective responses.
“Inspections take too long.”

Some team members seem to be opposed to inspections because they are just paper-shuffling meetings that waste their time. To convince someone with this mindset that inspections are necessary, the project manager must show him that every minute spent doing inspections can save many more down the road. Over the years, software engineering researchers have studied thousands of software projects in many different kinds of organizations. They found again and again that a defect that takes a few minutes to fix in a vision and scope or a use case document will require hours rather than days, or weeks to fix in code or testing.

The project manager should explain that a typical inspection meeting will take less than two hours. If each person at the meeting finds a single defect, it is more than makes up for the time that he spent reading and correcting the document. When looked at from this perspective, doing the inspection saves time.

“I don’t like people criticizing my work.”

Many people are uncomfortable to review their work by someone. They do not agree to point out their mistakes by people. It is the responsibility of the project manager that everyone makes mistakes, and usually those mistakes are not the fault of the author. If there is a problem in a document, it is because the author did not have enough information: bringing in the rest of the team can fill in those gaps.

The project manager can also point out that while it may be uncomfortable to have mistakes pointed out during the inspection, it’s much more uncomfortable when those mistakes are left in the document. The author of a use case document may feel bad momentarily when defects are pointed out and corrected during an inspection meeting. But if he feels bad then, he will feel terrible if those defects are not caught until after the team spends months for designing, programming, and testing the software, only to discover a “bug” that turns out to be a problem in his use case document. Instead of feeling bad when the inspection team points out problems, he should feel relieved that they were caught before they could cause project delays.

Defects should be discussed in terms of what is best for the work product or the project, not as criticisms of the author. It is very important that the moderator be extremely strict during the inspection meetings toward people who make rude personal comments. The moderator should enforce professionalism, and should ensure that every inspection meeting is conducted in a positive manner.

“I built it, and only I can say when it’s done.”

Some people are very protective of their work, and simply don’t want other people to criticize it. In these cases, the author feels that she is the expert, and feels that there’s nobody else in the organization who knows more about this subject. Be very careful when confronting her because this is an emotionally charged situation. It is important for the project manager to be non-confrontational. The project manager should work to influence this person, not to force her into a situation she doesn’t want to participate in. The best argument in this situation is to show her that the inspection is a tool that is there for her to use. It is like a spell-check in a word processor where the document is always better after the spell-check.

When an inspector finds a defect, he is helping the author to identify areas that need to be explained. The author assumed that each reader fully understood a concept and turned out that the reader needed some clarification after all. In this way, the document can be adjusted to the level of its specific readers.

Deskchecks

A deskcheck is a simple review in which the author of a work product distributes it to one or more reviewers. In a deskcheck, the author sends a copy of the work product to selected project team members. The team members read it, and then write up defects and comments to send back to the author. Work products that are commonly reviewed using a deskcheck include vision and scope documents and discussion summaries.

There are times when a full inspection is neither necessary nor useful. Some work products do not benefit enough to warrant the attention of an entire inspection team because they do not need consensus or approval. In these cases, the author simply needs input from others to prevent defects, but does not require that they approve the document. In these cases, the deskcheck is a useful review practice. Unlike an inspection, a deskcheck does the following:

· No written logs that can be archived with the document for later reference.
· No follow-up meeting or approval process.
· It is simply a way for one team member to check another’s work.
· No formal reviews (where “formal” simply means that it generates a written work product that meets a certain standard and is archived with the rest of the project documentation)
· No standard for the results of the deskcheck.
· Reviewers simply review the work product and return the results.
· No moderator available and is not necessary to generate the consensus (agreement).

But, despite the lack of formality, the deskcheck is a very important tool for a project team, and there are many times when the project manager will build deskchecks into the organization’s software process. If a work product does not need approval by a team but is still a critical part of the software process, the project manager may require a deskcheck in order to ensure that it does not have defects. For example, many QA teams employ automated test scripts, and it is usually necessary to ensure that the finished automated product actually covers the test plan that it was meant to automate. However, it would be unnecessary and very time-consuming to ask programmers, requirements analysts, project managers, and stakeholders to cross-reference each script with a test plan. A deskcheck can be used to verify that the script is correct, and to ensure that more than one QA engineer has taken responsibility for the quality of the script.

[image: image5.emf]
 Fig.5.2: Sample Deskcheck comments

Sometimes a checklist is used to ensure that the work product meets the organization’s standards. However, unlike an inspection, a deskcheck can be performed without a checklist. The deskcheck usually relies entirely on the reviewer’s knowledge of the project and professional standards for the work product. Fig.5.2 contains an example of comments from a deskcheck that was used by a tester to find defects in an automation script. In this case, the entire review was performed via email where the author mailed the script to the reviewer, and the reviewer read it and emailed the comments back to the author. These comments are much simpler than the inspection log in Fig.5.1. In an inspection, each log entry must either resolve a defect or indicate that it is an open issue that must be resolved. Deskcheck comments can simply point out issues or raise questions without having to supply solutions or promise a resolution.

Finally, a deskcheck can be useful to review a work product that is not meant to be inspected at all. A deskcheck is useful to help interviewees and other requirements analysts to identify information gathered during the interviews that is inaccurate or unclear. No approval is needed, and the requirements analyst is free to ignore any of the comments. The deskcheck simply serves as a checkpoint to ensure that mistakes are caught and addressed as early as possible.

Walkthroughs

A walkthrough is an informal way of presenting a technical document in a meeting. Unlike other kinds of reviews, the author runs the walkthrough based on calling the meeting, inviting the reviewers, soliciting comments, and ensuring that everyone present understands the work product. It typically does not follow a rigid procedure; rather, the author presents the work product to the audience in a manner that makes sense. Many walkthroughs present the document using a slide presentation, where each section of a work product is shown using a set of slides. Work products that are commonly reviewed using a walkthrough include design specifications and use cases.

Walkthroughs are used when the author of a work product needs to take into account the perspective of someone who does not have the technical expertise to review the document. For example, a requirements analyst must make sure that the use cases she builds will provide the functionality that the users need, but the user representatives may not have seen use cases before and would be overwhelmed by them. If these users are simply included as part of an inspection team, it is likely that they will read the document and, failing to find many defects, sit silently through the inspection meeting without contributing much. This is not their fault, because their training is in the business of the organization, not in reading and understanding software engineering documents. This is where a walkthrough can be a useful technique to ensure that everyone understands the document.

Before the walkthrough, the author should distribute any material that will be presented to each person who will be attending. For example, if the walkthrough is done as a slide presentation, copies of the slides should be emailed to the attendees. During the walkthrough meeting, the author should solicit feedback from the audience. This is an opportunity to brainstorm new or alternative ideas, and to check that each person understands the document that is being presented. The author should go through parts of the document to make sure that it was presented in as clear manner as possible. These guidelines can help an author lead a successful walkthrough meeting:

· Verify that everyone is present who needs to review the work product. This could include users, stakeholders, engineering leads, managers, and other interested people.

· Verify that everyone understands the purpose of the walkthrough meeting and how the material is going to be presented.

· Describe each section of the material to be covered by the walkthrough.

· Present the material in each section, ensuring that everyone understands the material being presented.

· Lead a discussion to identify any missing sections or material.

· Document all issues that are raised by walkthrough attendees.

After the meeting, the author should follow up with individual attendees who may have had additional information or insights. The document should then be corrected to reflect any issues that were raised.

Code Reviews

A code review is a special kind of inspection in which the team examines a sample of code and fixes any defects in it. In a code review, a defect is a block of code that does not
· Properly implement its requirements,
· That does not function as the programmer intended or
· That is not incorrect but could be improved (for example, it could be made more readable or its performance could be improved).

In addition to helping teams to find and fix bugs, code reviews are useful for both cross-training programmers on the code being reviewed and for helping junior developers learn new programming techniques.

Select the Code Sample

The first task in a code review is to select the sample of code to be inspected. It’s impossible to review every line of code, so the programmers need to be selective about which portion of the code gets reviewed. Many teams have found that it takes about two hours to review 400 lines of code (in a high-level language such as Java), although this estimate differs dramatically from team to team and depends on the complexity of the code being reviewed.

The purpose of any inspection is to find and repair defects. Since a relatively small portion of the code will be reviewed, it’s important to review the code that is most likely to have defects. This will generally be the most complex, tricky, or involved code. There are a few useful rules of thumb that are helpful:

· Is there is a portion of the software that only one person has the expertise to maintain? That may be a good candidate for review, for two reasons. First, because the rest of the team will learn how to maintain it; second, it’s only ever been looked at by one person, so nobody else has yet had a chance to catch any defects in it.

· Does the software implement a highly abstract or tricky algorithm? The more difficult the algorithm, the more likely it is that a programmer introduced errors in its implementation.

· Is there an object, library, or API that is particularly difficult to work with? Working with a non-intuitive interface causes many programmers to make mistakes.

· Was the code written by someone who is inexperienced or has not written that kind of code before? Does it employ a new programming technique? Is it written in an unfamiliar language? A programmer who is doing something for the first time is most likely to introduce errors.

· Is there an area of the code that will be especially catastrophic if there are defects? A core tax accounting function is more important than the code that renders the splash screen. Select code that must not fail so that more people can look at it and will be able to maintain it if it does have problems.

It is important to select a sample of code that an inspection team can review in about two hours. The project manager should try to keep the meeting to two hours or less, to avoid “meeting fatigue.”

Hold the Review Session

The team selection and preparation in a code review are similar to any other kind of inspection. An inspection team of 3 to 10 people must be selected. Each of these people must be technically capable of reading and understanding the code being reviewed. Before the meeting, the moderator distributes the code sample to each inspector, who does individual preparation exactly as in the inspection.

The main difference between a code review and any other kind of inspection is in the review session. While the code review session is similar to the inspection meeting (see “Page-by-page review” above), there are a few important differences.

In addition to the moderator, there is a code reader who reads the code aloud during the meeting. The code reader can also be one of the inspectors; the only requirement is that the reader must have enough technical expertise to understand the code. Since code is usually organized in logical units or blocks, it is more useful for a reader to go through those, rather than having the moderator go through the document page by page. The reader starts at the beginning of the code sample and announces the first block or logical unit. She does not literally read the commands in the code and simply gives a brief description (about one sentence) of the purpose of that block. If anyone (including the reader) does not understand what the code does or disagrees with the interpretation, the author of the code explains what it is the code is supposed to accomplish. Sometimes the team can suggest a better, more self-explanatory way to accomplish the same. If any inspectors found a defect in that block of code, the issue is raised and the team either comes up with a fix on the spot or tags it as an open issue for the programmer to fix later. The moderator then updates the inspection log, and the inspection continues until the reader completes the code sample being inspected.

Another important difference between code reviews and document inspections is that the code review is much more focused on detecting defects, and less on fixing them. This is because many defects in documents can be corrected with one or two sentences, or with a change in wording. Defects in the code can be much more involved, and there are often many ways that they could be fixed. The discussion of each defect is longer in a code review than it is during an inspection, and there are usually many open issues at the end of the code review.

In the code review, the moderator needs to be especially careful not to let the meeting turn into a problem-solving session. Programmers love to solve problems. It’s easy for them to get caught up in a small detail and turn the meeting into an analysis of a minute problem that covers just a few lines of code. However, long discussions like this will prevent significant amounts of code from being reviewed. There are effective ways to modify the code during the review. Many inspectors have found that it is very helpful to refactor the code during the review. By applying refactoring on the spot, the team can make the code much more readable and identify additional defects.

After the inspection meeting, the code author performs the rework and closes the open issues, and the moderator follows up with each of the inspectors and gains their approval. Instead of getting formal sign-off with physical signatures, it is usually sufficient to indicate the approval in the log comments when the changes are committed to the version control system. There are several additional benefits for the code review as follows:

· People learn how their teammates think about the code. A good way to encourage this is to switch off code readers in each review, so every team member gets a chance to be a reader.
· Reading code aloud and explaining it helps programmers think through problems. In addition, every programmer should be able to explain his ideas well.
· Discussing code during a code review is good practice.
· People who know that their code may be inspected tend to write more maintainable software. It’s very common for programmers not to include comments or to write very terse, confusing code when they know that they are the only people who will ever read it. But if a programmer knows that someone else will be looking at it, he may put a lot of effort into making it readable.
Code Review Checklist: The following attributes should be verified during a code review:

Clarity

Is the code clear and easy to understand?

Did the programmer unnecessarily obfuscate any part of it?

Can the code be refactored to make it clearer?

Maintainability

Will other programmers be able to maintain this code?

Is it well commented and documented properly?

Accuracy

Does the code accomplish what it is meant to do?

If an algorithm is being implemented, is it implemented correctly?

Reliability and Robustness

Is the code fault-tolerant? Is it error-tolerant?

Will it handle abnormal conditions or malformed input?

Does it fail gracefully if it encounters an unexpected condition?

Security

Is the code vulnerable to unauthorized access, malicious use, or modification?

Scalability
Could the code be a bottleneck that prevents the system from growing to accommodate increased load, data, users, or input?

Reusability

Could this code be reused in other applications?

Can it be made more general?

Efficiency

Does the code make efficient use of memory, CPU cycles, bandwidth, or other system resources?

Can it be optimized?

Pair Programming

Pair programming is a technique in which two programmers work simultaneously at a single computer and continuously review each others’ work. It improves the organization by ensuring that at least two programmers are able to maintain any piece of the software. Pair programming also helps programmers’ professional development, because they learn from each other.

Pair programming is like having a continuous code review, without the extra time or effort of holding individual code reviews. It encourages a redundancy among the team members, and everyone is cross-trained on various parts of the code. Junior people can more quickly learn directly from senior people when they are paired together. One useful benefit of pair programming is that people tend to write better code when they know that someone else will be reading it. They cut fewer corners, spend more time for making the code readable, are more likely to include comments where necessary, and refactor more often.

In pair programming, two programmers sit at one computer to write code. Sometimes they share a single keyboard and mouse, although it is possible to get special hardware or cables that allow each programmer to have his own. Generally, one programmer will take control and write code, while the other watches and advises. But different pairs of people may discover their own dynamic: for example, some pairs will take turns at the keyboard, while others will designate one person as the typist (if one person types significantly faster than the other). However, it’s important to remember that, like any programming technique, pair programming is a skill that improves with practice. Some benefits can be realized almost immediately, but there is no substitute for years of experience.

Some teams have found that pair programming works best for them if the pairs are constantly rotated; this helps diffuse the shared knowledge throughout the organization. Any two programmers can potentially make a well-functioning pair, no matter what their relative experience. Some people have found that it helps to choose pairs that include both a senior person and a junior person. This will make it easier for the communication to fit into an existing pattern (mentor and tutor, roles that both people are already used to play, although this is not necessarily how all senior-junior pairs will interact). Often, a junior team member will ask a seemingly “naïve” question about the code that turns out to identify a serious problem.

Pair programming is not for everyone. It is difficult to implement pair programming in an organization where the programmers do not share the same 9-to-5 (or 10-to-6) work schedule. Some people do not work well in pairs, and some pairs do not work well together. The project manager should not try to force pair programming on the team; it helps to introduce the change slowly, and where it will meet the least resistance. Some programmers will argue that assigning two people to one task is a waste of time, claiming that two people can get twice as much work done if they work separately. While this may seem true at first glance, the pair will introduce far fewer defects; it may require more man-hours to do the programming, but it will reduce the amount of time spent on bug-fixing and maintenance.
Use Inspections to Manage Commitments

A successful project needs more than just a blanket agreement between team members. It’s very easy for someone to “agree” to a document, only to turn around later and decide that he didn’t fully understand what he was agreeing to. Instead, the project team needs to reach a true consensus, where each person fully supports the document. The goal of an inspection is to build consensus on the document by gaining a real commitment from everyone who has read it. When a reviewer approves a document, he takes responsibility for its contents, and if the document has defects, he shares some of the blame for missing the mistake. The best way to reach consensus among the inspection team is for each person to feel like he or she made a real contribution to the document. The inspection meeting accomplishes that by allowing each person to find problems in the document and help the rest of the team find a solution to each problem. This is why it’s important for the team to go beyond just pointing out the defects in the document and actually come up with replacement wordings that fix the defects.

By the end of the meeting, nobody remembers that one person suggested this sentence, and another suggested that one; everyone feels a sense of ownership because it was a real group effort. That ownership means that each team member leaves the meeting with a real commitment to the document. This can eliminate many of the conflicts that can cause problems later on in the project.

Inspections are also important for gaining real, meaningful approval for a document. When a document is not correct, that puts the team members in a very difficult situation. Inspections are a way out of this situation. The inspection team is given the responsibility of approving the document. To accomplish that, each member is given the authority to withhold approval until any text in the document that prevents them from approving it has either been changed to meet their needs or has been explained to the approver’s satisfaction.

Other kinds of reviews are also useful in managing commitments. Deskchecks are especially important for gathering consensus among people in the organization who do not need to approve specific documents, but whose input is still very important. Project teams are made up of people who all share a common goal that getting the software project out the door. Stakeholders, users, engineers, and project managers all have this goal in common. This means that each person should be willing to take on responsibility to make sure that every document produced over the course of the software project is correct.

Diagnosing Review Problems

Many organizations rely on their testers (or, in worse cases, their users) to find the bulk of the defects in the software they produce. When the defects are caused by simple coding errors or typos, they are easy to correct. Unfortunately, very few defects are caused by simple coding errors or typos. Most defects are introduced before a single line of code is written. Sometimes a programmer misunderstands the design; at other times, the entire team fails to take a stakeholder’s needs into account and fails to build a needed feature into the software. Waiting until after the software is built to discover these problems results in an enormous amount of work to fix defects that should have been caught before a single line of code was written.

Problems Are Found Too Late

There are many problems that can be avoided by having the team adopt vision and scope documents, project plans, software requirements specifications, and other project documents. But what happens when the team doesn’t catch an error in one of these documents until the software is built.

One of the most common causes of project failure is that requirements contain a defect that is not caught until much later in the project. Trying to fix that defect after the software is built can be so costly that it can destroy the project entirely. For example, suppose that a team member writes a use case document to describe a critical feature. The document is emailed around to the team, and everyone reads it. However, some of the readers are very busy, so they only skim it and see that it looks about right. Others see problems, but don’t want to embarrass the author by bringing them up. A few think that they found very obscure problems and don’t want to embarrass the other readers who they think would not have come up with the problem. Eventually the user interface, architecture, and software are built. The product is passed down to the QA team, who start testing the build. They haven’t been a part of the development of the software at all, and have only been talking to the users and stakeholders, putting together a test plan to ensure that the software does everything that they expect it to. Within a few days, the QA team discovers a problem that there is a feature that does not work according to user expectations.

If the project team had inspected the use cases, this could have been avoided. Everyone with a stake in the project including QA team members would be invited to the inspection meetings, and each inspector would have a better idea of what to look for during the inspection process. It costs the same to build the right software as it does to build the wrong software. A few hours of searching for and fixing any problems with the use case document would have saved the team weeks or months of rework.

Big, Useless Meetings

Having a project fail due to a problem in a document that isn’t caught until late in the project is traumatic for a team. It’s especially bad for the person who wrote the document. Once a team experiences this problem, everyone feels especially motivated to do something about it. In many cases, the solution that seems most obvious to the team and the project manager is to distribute the responsibility for creating the document. The last project was a mess because the team missed something then there’s no way that they will let this happen again.

The project manager calls a meeting to get everyone together at the very beginning of the project. He takes no chances, inviting everyone who might possibly have some small input into the project and impressing upon everyone just how important the meeting is. An entire afternoon is blocked out for a standing-room-only session that’s supposed to let everybody have a voice in the design of the document. Everyone has something to say, and nobody wants to let any stone go unturned. The big meeting seemed like a good idea on paper, but it quickly gets bogged down in details that only one or two people care about.

The reviewers would have been more carefully selected. A single lead author would have had the responsibility of generating the document. Each reviewer would have had a well-defined role, reading the document and bringing up specific defects. Each defect would have been discussed by people with some knowledge to address it, and the responsibility for finding the errors would rest with the people capable of fixing them.

The Indispensable “Hero”

Sometimes a programming team has one “hero” who seems to stand out above everyone else. If a technical problem comes up that nobody can solve, and it looks like the deadline will be blown, the hero will often take the problem home on Friday night, work all week-end, and come in on Monday morning with a solution.

It seems like the hero is good for the team. But there are some serious downsides to his heroics. He’s a constant scheduling problem for the project manager, because it seems that no project can be completed without him. He’s constantly over-allocated, and there are entire programming teams who cannot move forward because they are waiting for him to finish a project. Meanwhile, he is constantly working 70-hour weeks, and the entire team is afraid that he will burn out or leave the organization.

In some cases, the hero is inadvertently keeping the rest of the team from advancing, either professionally or in the organization. It seems that the hero wrote the core of every code library. Only he knows the details of critical architecture pieces. The hero is tired of people talking about him getting hit by a bus, which seems to come up at least once in every architecture or code planning meeting.

The most difficult problem to deal with in this situation is maintenance. Because of his peculiar over-allocation problem, there is an increasing amount of code that only the hero is able to maintain. This is usually because he was called in to write the most difficult part of the code.

Code reviews and pair programming can help to alleviate the dependence on the hero. When he writes a piece of especially tricky code, he can hold a code review. If a group of programmers inspects that code, they will be able to maintain his code. In future projects, they’ll be able to draw on what they learned in the review session. This will help the entire team’s professional development. Pair programming can be especially helpful if the hero is teamed up with another senior programmer. Sometimes the “hero” status is merely a matter of perception that everyone just “knows” that he’s the best programmer around. Pair programming can help everyone on the team realize that they have other people who are just as valuable. For the true hero, sharing his skills with others will help him earn real respect from the team. Team members will be able to continue to learn from his experience, and he will be able to share and teach the team. The team, in turn, will come to see him as a role model and a leader, instead of just a hero who swoops in to fix their problems.

Question Bank
1. What is a project schedule? List out and explain supporting steps?

2. What is dependency? Explain the role of predecessor? Discuss supporting types.
3. Sketch the Gantt chart and explain how tasks are executed with example?

4. What is a review meeting? List supporting types. Explain critical path with example.

5. Track the performance of project using the following terms:

 i) Baseline ii) Actual iii) Slipped iv) Earned value management v) CPI

6. Explain the procedure for handling multiple projects with example.

7. Analyze the list of common problems in scheduling with example.
8. What is a review? Discuss its goals.

9. What is inspection? Discuss its importance. Explain supporting steps with example.

10. Why moderator is important? List his primary duties. Explain inspection log with example.

11. Describe the procedure for inspection meeting with example?
12. What are the major challenges to achieve author’s expectations? Discuss the importance of inspection.

13. Briefly explain the role of different people visions towards inspection?

14. Write a note on the following i) Deskchecks ii) Walkthroughs

15. What is code review? Explain the procedure to identify defects and how to fix it?

16. Explain how pair programming is efficient than other techniques?

17. How commitments can be achieved? Explain review problems?
